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Multichoice minority game
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The generalization of the problem of adaptive competition, known as the minority game, to the case ofK
possible choices for each player, is addressed, and applied to a system of interacting perceptrons with input and
output units of a type ofK-state Potts spins. An optimal solution of this minority game, as well as the dynamic
evolution of the adaptive strategies of the players, are solved analytically for a generalK and compared with
numerical simulations.
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I. INTRODUCTION

Considerable progress in the theoretical understandin
market phenomena has been achieved by the study o
minority game. This prototypical model describes a syst
of agents interacting through a market mechanism@1–6#.
The game is based on the idea that the behavior of the ag
is determined by the economic rule of supply and dema
According to this rule, given the available options~such as
buy or sell!, an agent wins if he chooses the minority actio
The research of this game has focused on cases in w
each agent can choose between two options, using its m
efficient strategy, where the strategies remain unchan
throughout the game@1–6#. However, in the real world,
many situations of interest involve more than two decis
options, as well as agents with dynamic strategies. Mak
decisions such as where to spend the summer vacatio
which server to choose while surfing the web~or, more gen-
erally, how to distribute data traffic in computer networ
@10#! are only two among many common problems w
more than two options. Therefore, it is tempting to inves
gate cases with more than two possible choices provide
agents with dynamic strategies. In a recent study of an
tension in which each agent is equipped with a neural n
work for making his decision@7#, it was shown that a certain
updating rule of the strategies of the agents improves
efficiency of the market, which is measured by the glo
profit of the agents. In this paper we generalize the afo
mentioned work to a multichoice minority game, namely
game with generalK decision states.

The multichoice minority game consists ofN players
~agents! andK possible decisions. In each step, each one
the players chooses one of theK states, aiming to choose th
state with the smallest number of agents. For example
situation may arise in which there are several possible ro
which lead from placeA to placeB, and each driver who
wants to get fromA to B chooses one of the available road
Because drivers want to avoid traffic jams, they try to cho
the least traveled roads, assuming that all the roads are o
same length. Similarly, one usually prefers to go to the
with the smallest number of people in it. Occurring over a
over again, the minority decisions in these and other sim
situations generate time series whose term at timet, xt , has
an integer value between 1 andK according to the minority
1063-651X/2001/63~6!/066103~5!/$20.00 63 0661
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decision. In the original game, the information provided
each player is the history vector of sizeM, whose compo-
nents are the lastM minority states.

The paper is organized as follows: In Sec. II, a multilay
neural network and the dynamic evolution of its weights a
introduced. For the clarity of the rest of the paper, which
somewhat technical, we briefly discuss the main findings
results. In Sec. III, the reference case of players with rand
strategies is solved analytically. In Sec. IV, the global pro
of the players for the network with optimal strategi
~weights! is solved analytically in the thermodynamic limi
and is shown to be superior to a random decision. The a
lytical results are compared with simulations on finite sy
tems. In Sec. V, the suggested updating rules for the weig
are examined analytically, and are found to saturate the
timal global profit asymptotically. Finally, Sec. VI is devote
to a short summary and an outlook.

II. MODEL

While many strategies for the multichoice minority gam
are conceivable, we study the following model which us
neural networks: each one of theN players is represented b
a perceptron of a sizeM. The weights belonging to thei th
player are$wi j %, wherej 51, . . . ,M . All N perceptrons have
a common input which consists ofM components
x1 , . . . ,xM , where each of the components can take one
the K integers, 1,2, . . . ,K, with equal probability.

The dynamics are defined by the following steps. In t
first step, each of the perceptrons calculates theK induced
local fields. For instance, the fieldhim , induced by themth
state on playeri, is defined as the summation over a
weights belonging to thei th perceptron with input equal to
m:

him5(
j 51

M

wi j dxj ,m . ~1!

In the second step, each player chooses its state$s i%, follow-
ing the maximal induced field

s i5$k1u max
m51, . . . ,K

him5hik1
%. ~2!
©2001 The American Physical Society03-1
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wheres i is an output~chosen state! of i th perceptron. In the
third step, the occupancy of each state is calculated,

Nr5(
j 51

N

ds j ,r , ~3!

where it is clear that(rNr5N. The output min of the net-
work is the minority decision

min5$ru min
m51, . . . ,K

Nm5Nr%. ~4!

The game can also be represented by a feedforward
work M :N:1 (M input units,N hidden units, and one out
put!. All units ~input, hidden, and output! are represented b
K-state Potts spins. The weights$wi j % are from the input
units to the hidden units, and the weights from the hidd
units to the output are all equal to21. The dynamics of
hidden and output units are similar to the zero tempera
dynamics of Potts-spin systems@8,9#, following the maximal
induced field. The free parameters in our game are theMN
weights$wi j % from the input to the hidden units. Their value
will be determined by the strategy adopted by each of
players. Our local dynamic rules are based on the gene
zation of the on-line Hebbian learning rule forK52 @7# to a
generalK-state Potts model with the updating rule

wi j
15wi j 1

h

M
~Kdxj ,min21!, ~5!

whereh is the learning rate, and the sign1 indicates the
next time step. Note that all agents use the same rule
updating their strategy.

The score of the game is determined similarly to the Is
case. Players belonging to the minority (Nmin players! gain
Q1 , while the otherN2Nmin players gainQ2 , whereQ1

.Q2 . Note that in most previous worksQ1 was chosen to
be 1 andQ2 was chosen to be either 0 or21. The global
profit in such cases is

U5Q2N1~Q12Q2!Nmin . ~6!

It is clear that the maximization of the global profitU is
equivalent to the maximization ofNmin , which is bounded
from above byN/K. Note that in the Ising case each play
belongs either to the minority or to the majority, while in th
Potts case the situation is more complex. The score m
depend on the exact values of$Ni% ~the score decreases wit
Nr), and hence the total profitU5U($Ni%). In such a case
the maximization of the total profit may differ from th
maximization ofNmin , and will be discussed briefly at th
end of this paper.

Before we turn to a discussion of the guidelines of t
derivation of the results, which are more involved than
the Ising case, let us present the main results:~a! The score
and the dynamics are formulated analytically for generalK,
the number of possible decisions. Exact results are obta
for K<6 and asymptotically forK→`. Results for interme-
diate values ofK are obtained from simulations.~b! A relax-
ation to the optimal score is achieved for small learn
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rates.~c! Regarding the optimal case, the deviation of t
minority group size fromN/K is found to be nonmonotonic
with K. ~d! The total score is independent of the size of t
history (M , the size of the input! available for the agents.~e!
All agents use the same type of dynamic strategy and g
on average~over time!, the same profit. Our system does n
undergo a phase transition to a state where the symm
among the agents is broken into losers and winners@4,5#.
Throughout the investigation of the game we assume that
memory sizeM is larger than the number of playersN ~oth-
erwise the completely symmetric Potts configuration is g
metrically impossible!. However, simulations of the sam
dynamic for systems withM,N show even better results fo
the global profit.

III. RANDOM CASE

In the case where the maximization of the global profitU
is identical to the maximization ofNmin , the quantity of
interest is

^emin
2 &5

1

N
^~Nmin2N/K !2&, ~7!

where the symbol̂ & indicates an average over input pa
terns, andN/K is the average number of players in ea
state. Note that in our calculations the input vector presen
to the players at each step of the game consists of ran
components@4,7#, instead of the true history. Nevertheles
simulations indicate that the system behavior is only sligh
affected by the randomness of the inputs, and the game p
erties remain similar.

For random players, each weight~among theMN weights
$wi j %) is chosen from a given unbiased distribution and
variance 1/M . Hence the distribution of the overlapR be-
tween weights belonging to any two playersr andf,

Rrf5(
j 51

M

wr jwf j , ~8!

is a Gaussian with zero mean and variance 1/M . In the ther-
modynamic limit and forM.N, one can show that in lead
ing order the distribution of the overlap between each pai
an independent random variable. For random players anK
52 one findŝ e2&5^(r(Nr2N/K)2/(NK)&51/4; however,
for generalK even the derivation of a similar quantity i
nontrivial. The two cornerstones of the calculations bel
are the probability of a microscopic configurationP($s i%),
and the degeneracyD($Nr%) of a macroscopic configuration
$Nr%, which is given by the multinomial coefficient

D~$Nr%!5
N!

)
r

Nr!

. ~9!

In the largeN limit, the typical deviation of the size of eac
group from N/K is expected to scale withAN. Hence we
define
3-2
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Nr5N/K1erAN, ~10!

where it is clear that(rer50, and without loss of generality
we assumeNmin5N1<Nr ;r.1. Applying the Stirling
approximation to Eq.~9! yields the degeneracy as a functio
of $er%:

DK~$er%!;KN expS 2
K

2 (
r51

K

er
2D dS (

r51

K

erD . ~11!

If the average overRrf , which we denote byR, is 0, the
agents make their choice independently and randomly
each microscopic configuration has the same probab
PK5(1/K)N. Now the average overemin

2 can be evaluated:

^emin
2 &R5

E
2`

0

e1
2de1 )

r.1
E

e1

`

derDK~$er%!PK~$er%!

E
2`

0

de1 )
r.1

E
e1

`

derDK~$er%!PK~$er%!

.

~12!

The quantity^emin
2 &R50 was calculated numerically forK

53, 4, 5, and 6, and found to be equal to;0.313, 0.322,
0.320, and 0.309, respectively~see Fig. 1!. Results obtained
from simulations withN55000 andK<6 are in an excellen
agreement with Eq.~12!. For K.6 the reported results in
Fig. 1 were derived only from simulations, and are in exc
lent agreement with the asymptotic behavior of Eq.~12!,
^emin

2 &R50;2 log(K)/K. Another quantity of interest is the
average deviation of the average number of players in e
state fromN/K, ^e2&5^(1/K)(rer

2&. Similarly to Eq. ~12!,
this quantity can be derived analytically, and gives

^e2&R505
K21

K2 . ~13!

FIG. 1. Simulations for̂ emin
2 & as a function ofK for both the

optimal caseR521/(N21) ~solid curve! and the random caseR
50 ~long dashed curve!. Analytical results up toK56 and for the
large K regime are confirmed by simulations for bothR521/(N
21) ~filled circles! and R50 ~triangles!. Inset: GK

5^emin
2 &R50 /^emin

2 &R521/(N21) as a function ofK.
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IV. OPTIMAL CASE

So far we have compared̂emin
2 & and ^e2& for random

players, where the average overlap is zero. Without break
the symmetry among the players, the weights can be re
sented byN weight vectors which are symmetrically sprea
around their center of mass. More precisely, we denote
weight vector of thei th perceptron aswi , and assume that i
can be expressed as

wi5C1gi , ~14!

where the center of massC[(1/N)( iwi , and$gi% areN unit
vectors of rankM obeying the symmetry

gi•gj5S 11
1

N21D d i j 1
1

N21
. ~15!

Hence the total profit andNmin are functions of only one
parameter,C. It is clear that the maximization of the tota
profit or Nmin ~as for the caseK52) is obtained whenC
50, which is the maximal achievable homogeneous rep
sion amongN vectors of rankM.N. The repulsion is the
natural tendency of each player in the minority game, sin
the goal is to act differently from other players. Without
cooperation which breaks the players into subgroups,
maximal homogeneous repulsion isR521/(N21).

The two questions of interest are the following:~a! What
are ^e2& and ^emin

2 & as functions ofK for the optimal solu-
tions,C50 andR521/(N21)? ~b! Is the optimal solution
achievable by local dynamic rules for each of the playe
We first examine the former question regarding the optim
solution, and then we turn to study the dynamic behavior
the players.

The average deviation of the number of players in ea
state fromN/K at C50 and forR5O(1/N) can be calcu-
lated analytically. The main idea is that this quantity can
calculated similarly to Eq. ~12!, or via ^e2&51/
(NK)^((r51

K ( i 51
N ds i ,r2N/K)2&. The simplification of the

latter expression is such that an average over only a pa
players has to be done. The result as a function ofK gives

^e2&R5
K21

K2 1R~N21!~K21!Km, ~16!

where m5@*2`
` (e2h2

/2p)„12H(h)…K22dh#2, and H(x)
50.5 erfc(x/A2).

Regarding the optimal score, the quantity of a particu
interest iŝ emin

2 &R521/N21. This quantity has to be compare
with ^emin

2 &R50 in order to estimate the improvement in th
average global gain relative to the random case. Note tha
calculation of Eq.~12! for RÞ0 is nontrivial sincePK($er%)
is no longer independent of the configuration$er%. However,
we can overcome this difficulty in the following way. Fo
R5O(1/N) one can show that in the leading orderPK($er%)
has the same form asDK($er%),
3-3
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PK~$er%!;~1/K !N expS 2A~R! (
r51

K

er
2D dS (

r51

K

erD ,

~17!

where the exact value ofA(R) is unknown. The observation
that bothPK($er%) andDK($er%) have the same dependen
on $er% @Eqs. ~11! and ~17!# indicates that the ratio
^emin

2 &/^e2& is independent ofR if R5O(1/N), and, in par-
ticular,

^e2&R50

^emin
2 &R50

5
^e2&R521/(N21)

^emin
2 &R521/(N21)

5bK . ~18!

This property can be easily derived by rescalinger

→AA(R)er in the integral representation@Eq. ~12!# of each
of the four terms in Eq.~18!. The same prefactor appearin
both in the denominator and the numerator, and the dep
dence ofbK on R via A(R) is canceled out. Using Eq.~18!,
^emin

2 &R521/(N21) can be obtained indirectly from a know
edge of the other three terms, which are given by Eqs.~12!,
~13!, and~16!. Results for̂ emin

2 &R521/(N21) are presented in
Fig. 1. In order to confirm our analytical results, we pe
formed simulations for the optimal case@Eqs.~16! and~18!#,
with C50. The simulations were done in two stages. In
first stage,N normalized vectors of rankM, obeying the con-
straints that the overlap among each pair is equal to21/(N
21), are generated using a recursive process. The deta
the algorithm will be given elsewhere@11#. In the second
stage,^emin

2 & and ^e2& were averaged over about 105 ran-
domly chosen inputs for a system withN5400 and M
55000. An excellent agreement between simulations
analytical results was obtained~see Fig. 1!. The improve-
ment in the global gain can be measured by the ratioGK

5^emin
2 &R50 /^emin

2 &R521/(N21) . This ratio decreases mono
tonically withK, such that its maximal valueG252.7548 and
for K→` GK→1 ~inset of Fig. 1!.

V. DYNAMICS WHICH LEAD TO THE OPTIMAL
SOLUTION

So far we derived the properties of the optimal soluti
for different values ofK. Now we turn to the second ques
tion: is the optimal solution achievable by local dynam
rules @Eq. ~5!#? After averaging Eq.~5! over j, and in the
limit where the number of examplesaM scales with the
number of input unitsM, one can find the following equatio
of motion for the center of mass:

dC2

da
52hKK (

j
Cjdxj ,minL 1h2~K21!, ~19!

where^ & denotes an average over the random examples.
largeM, in the leading order each input vector divides ea
weight vector intoK equal groups of sizeM /K. The minority
state is the one whose group of weights gives the mini
sum. Using Eq.~19! andM ,N→`, ^( jCjdxj ,min& is the av-

erage minimal sum of a set ofM /K center of mass compo
nents,$Cj%. TheseM /K quantities are random variables wi
06610
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zero mean and varianceC2/M @^( j 51
M /KCj&50 and

^(( j 51
M /KCj )

2&5C2/K#. One can find that̂ ( jCjdxj ,min& is
equal to

C

2
~K21!AK

p
E

2`

` e2y2/2

A2p
FHS y

A2
D GK22

dy. ~20!

Hence, for a givenK, Eqs. ~19! and ~20! indicate a linear
relation between the fixed point value ofC and the learning
rate h with corrections ofO(1/AN). As h→0, C→0, and
the system approaches the optimal configuration. The in
play betweenC andh was confirmed by simulations, wher
finite size effects decay as the size of the system beco
larger. This effect is depicted in Fig. 2 forK53. The explicit
dependence of̂ emin

2 /N&R on C can be found for R
;O(1/N) via the relation

R5
C22@1/~N21!#

C211
. ~21!

Results of simulations for̂emin
2 &R as a function ofC for N

5103 andM5200 are presented in the inset of Fig. 2. A
excellent agreement between the analytical prediction
simulations was obtained in the regime ofC;O(1/AN)
@corresponding to;O(1/N)#.

Note that although the global gainU which corresponds
to the Boolean case is monotonic withK, the nonmonotonic
behavior ofemin implies that for non-Boolean cases a no
monotonic behavior ofU may be obtained.

VI. SUMMARY AND OUTLOOK

In this paper we introduced a generalization of the min
ity game to the case of multichoice. The problem was
plied to a multilayer network with updating rules for th
weights ~strategies!. Static and dynamic properties of th

FIG. 2. C as a function ofh for K53. Analytical results~solid
line! and simulations forN5103, M5200 ~long-dashed line! and
N5400, M5403 ~dashed line!. Inset:^emin

2 & as a function ofC for
K53. Analytical results~solid line! and simulations forN5103
andM5200 ~filled circles!.
3-4
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strategies were solved analytically for variousK ’s, and were
found to be in a good agreement with simulations on fin
systems. This modification of the minority game to the ca
of multichoice opens a manifold of new questions, whi
certainly deserve future research. We have chosen thre
these questions to briefly discuss here. First, as we poi
out before, the function according to which the profit
awarded is not necessarily Boolean as in Eq.~6!. In fact, the
model is more realistic when the profit of a player is rela
to the size of his group, as well as to the size of the ot
groups@12#. Our analysis can be applied to these cases if
maximization of the global gain is equivalent to the maxim
zation of the minority group. However, other scores may
fulfill this required condition. In these cases, it has to
determined whether the optimal symmetric configuration
mains the maximal repulsion. Second, the other strategie
the minority game that have been studied can be genera
to multichoice situations in a straightforward manner: in t
original game@1,2,5,6#, where each player has several de
sion tables, each table entry is now a value between 1 anK.
In Johnson and co-workers stochastic strategy@13,14#, each
player has a probability of choosing the outcome that w
successful the last time, or of picking one of the others w
to

t
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equal probability. In the strategy of Reentset al. @15#, play-
ers who were not in the minority could switch to some oth
action with a small probability in the next time step. Sim
larly, other conceivable strategies can also be generali
Preliminary checks imply that all these modified strateg
show similar behavior compared to that of the binary-cho
game, even though their theoretical treatment probably
comes more involved. While outcomes of these games
tainly have to be measured against the reference values g
in Eqs. ~12! and ~13!, it is not clear under what circum
stances relations like Eq.~18! hold for other strategies. Fi
nally, problems in which some players have more influen
on the system then others~for example, bus drivers com
pared with car drivers in the traffic problem which was d
scribed in Sec. I! can be modeled as a three-layer netwo
with nonuniform weights between the hidden units to t
output. Further research is necessary to find out how
optimal configuration is affected by such symmetry brea
ing.
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